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Abstract
The Fulde–Ferrell–Larkin–Ovichinnikov (FFLO) phase is investigated in a two-dimensional
superconductor described by a negative-U Hubbard model in the presence of a magnetic field.
The parameter space defined by interparticle attraction and band filling is investigated and a
search is performed for the FFLO phase therein, so as to provide clues to experiments designed
to confirm the existence of a nonuniform spatial nature of the superconducting state. Our results
convincingly demonstrate periodic modulation of the local pairing gap in real space. Heavy
fermions, considered as a probable candidate that hosts the FFLO phase, are found in a
metallurgically clean state and shows extreme type-II behaviour. In our calculations both these
conditions are satisfied for a certain magnetic field range and the range expands for large
interacting strengths and particle densities. The cleanliness condition is met as the coherence
length becomes very small (compared to the mean free path) and the extreme type-II behaviour
shows up via a large Ginzburg–Landau parameter.

1. Introduction

The study of superconductivity in the presence of a magnetic
field commenced nearly half a century ago with the works
of Clogston and Chandrasekhar [1, 2]. The subject
was intermittently revived to discuss the bounds on the
upper critical field and its effect on the phase boundary
where paramagnetic effect governs the physics. More of
the numerous implications of the presence of an external
magnetic field are elucidated by Fulde and Ferrel [3] and
by Larkin and Ovichinnikov [4], where a possibility of
finite momentum pairing between the different participation
species of electrons is explored. The first experimental
realization of a finite momentum pairing was obtained in a
heavy fermion compound (UPd2Al3) via thermal expansion of
magnetostriction measurements [5]. Soon after many other
heavy fermion compounds also reported the FFLO phase [5–7].

The factor aiding the heavy fermion compounds to
be candidates for realizing Cooper pairing with a nonzero
momentum can possibly be attributed to the extreme type-II
behaviour, a high effective electron mass, m∗, with a large
Ginzburg–Landau and Maki parameters and their availability

in metallurgically clean state. All these qualities put together
imply a very large upper critical field and thus underscore the
ascendancy of paramagnetism over the orbital effect.

An alternative route to achieve the supremacy of
paramagnetic effect is to use a layered structure in a
strong magnetic field applied parallel to the layers, thereby
undermining the orbital pair breaking effect further and
augmenting the parameter space where the FFLO phase can
exist [8]. The organic superconductors strongly fit into these
requirements and hence are considered as ideal candidates
for the FFLO phase [9–11]. Apart from these compounds,
signatures of FFLO phases are also observed in other materials
such as neutron stars [12] and ultracold atomic gases [13]. An
attempt to elaborate on these topics will lead us to digress from
the main focus of the paper and there are many good reviews
on the subject. Only a few are listed here [14, 15].

To make the introductory discussion self-contained, we
briefly mention a few experimental results, particularly in
heavy fermion compounds which provide support to the FFLO
phase present there. In CeCoIn5, the heat capacity data as a
function of magnetic field, h, with h applied along the ab-
plane, shows two phase transitions, a second order one within
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the superconducting (SC) state at low field values and a higher
field first order transition at Hc2 [16], the intervening regime
acquiring a nonuniform nature. However with the external
magnetic field acquiring an angle with the ab-plane, the orbital
effect starts playing a role. The large field transition goes away
rendering an absence of the nonuniform or the FFLO state. The
above conclusions were promptly contested by Movshovich
et al [17, 18].

Other experiments such as anisotropic magnetothermal
measurements [19, 20], ultrasound velocity measurements [21]
etc provide only indirect and cursory evidence supporting the
presence of an FFLO state.

More recently, 115In NMR studies on CeCoIn5 with
the applied field parallel to ab plane revealed a dramatic
asymmetry in the NMR spectrum for a field greater than
the upper critical field when compared with a field less than
that [22]. Further, an unusual temperature dependence of
the Knight shift of 115In is noted for the latter case. These
facts are correlated with direct evidence of the FFLO phase
and a simulation of the NMR spectrum with a spatially
modulated gap function, seeming to satisfactorily explain the
experimental findings [23]. Even these results were challenged
in the light of other NMR studies [24].

Thus it is fairly evident that the experimental signatures of
the FFLO phase in real systems can still be questioned. This
provides a motivation for us to look for the spatially modulated
profile of the order parameter, a hallmark of the FFLO phase.
Thus, the stringency of the number of conditions to be met
simultaneously, that impedes the scope of observing the FFLO
phase in experiments, is explored [25].

Starting with a weak coupling BCS superconductor in
a magnetic field, we solve the mean field Bogoliubov–de
Gennes (BdG) equations for an attractive Hubbard model in
two dimensions. The mean field order parameter thus obtained
in real space shows periodic modulation, a signature of a
finite momentum Cooper pairing and hence a FFLO phase.
The dependence of this modulated phase on the (attractive)
Hubbard interaction, |U |, and band filling, μ (or particle
densities, n), is investigated in detail to comment on the
possible difficulties in accessing this phase experimentally.
Some of the characteristic properties of a superconductor
are calculated, such as the coherence length (related to the
wavefunction of modulation in the order parameter [16, 21])
and the penetration depth (related to the superfluid density
or stiffness [33]) etc to provide strong evidence in favour of
observing the FFLO phase. The relevance of our results to real
materials, such as heavy fermion compounds are discussed.

We organize the paper as follows. The model and the
BdG formalism are briefly discussed in section 2. The
details are skipped here since they have been discussed earlier
in the literature [26–28]. Section 3 contains a convincing
demonstration of the periodic profiles of the order parameter
and local magnetization for certain choice of parameters. It
is worth mentioning here that the previous reports have been
restricted to a very narrow parameter range [29, 30] and thus a
detailed study of the effect of electronic interaction strength
and density on the FFLO phase was missing. The results
further include an estimation of characteristic lengths, such as

the coherence length and the penetration depth, which yields
a large Ginzburg–Landau parameter. This information nicely
correlates with the requirements for the existence of the FFLO
phase in physical systems, such as heavy fermion compounds
etc.

2. Model and formalism

We consider a two-dimensional Hubbard model with |U | as the
magnitude of the onsite attractive interaction,

H = −t
∑

〈i j〉,σ
(c†

iσ c jσ + h.c.)

− |U |
∑

i

(ni↑ − 1
2 )(ni↓ − 1

2 ) +
∑

i,σ

(σh − μ)niσ . (1)

c†
iσ (ciσ ) is the creation (destruction) operator for an electron

with spin σ , which can assume values ±1 at a site ri , h is the
magnetic field which couples with the spin, σ , of electrons via
Zeeman coupling, niσ = c†

iσ ciσ and μ denotes the chemical
potential. Here t is the transfer integral. Other parameters such
as, U , h and μ are expressed in units of t . t is typically of the
order of 1ev.

Hartree–Fock decomposition of the interaction term in
equation (1) yields,

Heff =
∑

i j,σ

Hi jσ (c†
iσ c jσ + H.c.) +

∑

i

[�i c
†
i↑c†

i↓ − �∗
i ci↑ci↓].

(2)
Here Hi jσ = −tδi±1 j − (μ + Uδni σ̄ − σh)δi j , where δni σ̄ =
ni σ̄ − 1/2 with σ̄ = −σ . The local pairing amplitude,
�i = −|U |〈ci↓ci↑〉 is the order parameter.

The following transformations are used to diagonalize
equation (2),

ciσ =
∑

n

[γnσ un(ri ) − σγ
†
nσ̄ v∗

n(ri )], (3)

where γnσ and γ †
nσ are the quasiparticle operators, un(ri ) and

vn(ri ) are the BdG eigenvectors.
Applying the above transformations in equation (2), we

get the BdG equations in a matrix form as
(Hi jσ �̂i

�̂i
∗ −H∗

i j σ̄

) (
un(ri )

vn(ri )

)
= En↑

(
un(ri )

vn(ri )

)
, (4)

where En↑ are the eigenvalues. We start with initial guesses
for the pairing amplitude, �i and the density of up and down-
spin electrons, 〈ni↑〉 and 〈ni↓〉 respectively. Subsequently,
the eigenvalues, En↑ and the eigenvectors (un(ri ), vn(ri )) are
determined numerically from equation (4). The local pairing
amplitudes at sites ri and the density of up and down-spin
electrons in terms of un(ri ) and vn(ri ) are calculated from,

�(ri) = −|U |
∑

n

[un(ri )v
∗
n(ri ) f (En↑)

− un(ri )v
∗
n(ri ) f (−En↓)] (5)

and

〈niσ 〉 =
∑

n

[|un(ri )|2 f (Enσ ) + |vn(ri )|2 f (−Enσ̄ )], (6)
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where f (Enσ ) is the Fermi distribution function. In this paper,
we present results only at zero temperature, where f (Enσ ) is
unity. The entire process is iterated with new guesses for the
above quantities until self-consistency is achieved for all of
them simultaneously.

As discussed later, a number of self-consistent solutions
may exist for the pairing amplitude, �(ri), corresponding to
one set of parameters. The winner among these will be decided
by computing the free energies, F , computed with respect to
the free energy in vacuum (at zero temperature) and is given
by [29],

F =
∑

nσ

Enσ

[
f (Enσ ) −

∑

i

|vn(ri )|2
]

+ |U |
∑

i

〈ni↑〉〈ni↓〉 + 1

|U |
∑

i

�2
i − |U |N

4
. (7)

For example, consider one particular parameter set, |U | = 2.5,
μ = −0.5 and h = 0.35, all in units of t (same as elsewhere in
the paper). The free energies are computed using equation (7)
corresponding to BdG solutions that yield uniform, one period
and two period modulations for the local pairing gap, �i and
are obtained as −1.2539, −1.2543 and −1.2520 respectively
(again in units of t) for a two-dimensional lattice of size 32×16
(see discussion below). Since one period modulation for �i

yields the lowest energy, it is considered as the energetically
favourable solution. We have carried out similar studies for all
choices of U and μ corresponding to various values of h used
in the paper to pin down the stable solution.

Next we comment on the choice of parameters. We
investigate the behaviour of the pairing amplitude for different
values of μ corresponding to a few representative values
of onsite interaction strengths, |U | = 1, 2.5 and 4. The
rationale behind the choice of U is to get an insight into the
stability of the FFLO phase at weak to moderate interparticle
attraction strengths (mean field studies prohibit large U ) for
various densities. All our calculations are carried on a two-
dimensional lattice of size 32 × 16. The reason behind
choosing a rectangular lattice instead of a square one, is
as follows. The FFLO order parameter undergoes a one-
dimensional modulation with a period that is commensurate
with the lattice size [29, 30]. Thus, the choice of a rectangular
lattice allows us to increase the lattice size along one direction
such as to accommodate more periods of the pairing gap.

3. Results

It is evident from our earlier discussions that magnetic field
induces a nontrivial Cooper pairing and hence an uncon-
ventional superconductivity when all associated conditions
are simultaneously satisfied. In an attempt to get a deeper
understanding of this novel superconducting state, we compute
few important length scales, namely the coherence length, ξ

and the penetration depth, λ that characterize a condensate, in
the subsequent discussion. Since the modulation of the order
parameter is suggestive of a FFLO phase, we first compute �i

for the parameter values discussed earlier. The self-consistent
�i thus obtained show interesting variations as the magnetic
field is increased, that is, starting with a uniform order at

Figure 1. A schematic representation of the FFLO phase is shown as
a function of the magnetic field. This phase, obtained via
minimization of the corresponding free energy, is intermediate to a
BCS superconductor (homogeneous �i ) and a normal phase
(�i = 0). The boundaries of the FFLO phase are marked by hc1 and
hc2 , the lower and upper critical magnetic fields respectively. The
diagram is valid over a large regime of U–μ parameter space, except
at low U and densities where the intermediate space is vanishingly
small.

small h values, the order parameter shows periodic modulation
at intermediate fields before vanishing at large fields. The
modulating part between lower and upper threshold magnetic
field values, namely hc1 and hc2 respectively, represents the
FFLO phase and is central to our discussion. The scenario is
schematically shown in figure 1.

Before we proceed with the discussion on the effect of
interparticle attraction, we note that the FFLO phase is not so
sensitive to the carrier density. We are able to observe the
existence of the FFLO phase at almost all densities, except
for very low ones where superconductivity itself becomes very
weak. To arrive at the above conclusion, we have scanned
a large U − μ parameter space. Thus we have fixed μ at
μ = −0.5 such that the density is fixed at a value around
quarter filling.

The interaction effects are invoked via a comparison
between |U | = 2.5 and 4, which yields a broader FFLO phase
for the larger |U |. For |U | = 4, the region intervening two
critical fields (hc1 and hc2 ) is wider than that for |U | = 2.5,
thereby establishing the fact that the FFLO state is stable
for strong interaction strengths. To quote some values for
extending support to the above argument, hc1 and hc2 are
obtained as 0.35 and 0.55 respectively for |U | = 2.5, whereas
the same for |U | = 4 are 0.9 and 1.88. The periodic
modulation of the pairing amplitude presented in figure 2,
suggests that �i has a larger amplitude for stronger U . Also
note that with increasing h, the amplitude decreases and also
more periods are accommodated. The latter can be understood
as follows. The rise in the number of broken Cooper pairs
(�i = 0) results in increase in the number of nodes in the
spatial profile of the order parameter. At still lower values of
U , e.g. |U | = 1, a direct transition from the superconducting
to the normal phase is obtained, mainly because of weak
superconducting correlations.

A subtle point needs mentioning in the preceding
discussion. The fully self-consistent solutions for the BdG
equations demand simultaneous self-consistencies of �i , 〈ni↑〉
and 〈ni↓〉 and thus require more computational time in the
vicinities of hc1 and hc2 owing to the existence of different

3
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(a) (b)

(c) (d)

Figure 2. Local pairing amplitude modulation is shown for |U | = 2.5 ((a) and (b)) and |U | = 4 ((c) and (d)) for magnetic field values
between hc1 and hc2 . The four figures correspond to h = 0.35 (a), 0.5 (b), 0.9 (c) and 1.2 (d). The band filling is chosen to be μ = −0.5 and
the system size is Lx × L y = 32 × 16 and the same are considered for other figures. All the parameters are in units of t (true for all other
figures) and our calculations are done at T = 0.

(This figure is in colour only in the electronic version)

competing solutions. The difficulty can only be partially taken
care of by clever choices of the initial guesses for the above
quantities.

We now focus on the coherence length, ξ , which is the
separation between the Bloch walls of broken Cooper pairs
(�i = 0) [16]. More concretely, ξ is of the order of the
wavelength of the order parameter and can be computed from
the modulation seen in �i presented in figure 2. It is seen that ξ

undergoes appreciable reduction from a large value (practically
infinite corresponding to homogeneous �i in the BCS phase)
to a few lattice spacings at the onset of the FFLO phase. This
result is elucidated in figure 3, which also shows ξ reducing
further within the FFLO phase. We note that the reduction
in the magnitude of ξ as h increases is more pronounced for
|U | = 4 (than for |U | = 2.5) which accommodates more
periods of the order parameter and hence is characterized by
even shorter ξ . A short coherence length makes it easy for the
condition l � ξ (l being the electron mean free path) to be
met, a requirement laid out for realizing the FFLO phase.

Another quantity, the local magnetization, mi (=ni↑ −
ni↓), also suggestive of a nonuniform phase, is considered.
mi exhibits modulation, reminiscent of the behaviour of the
pairing gap. It is interesting to note that the period of
modulation of mi is half of that of the order parameter,
as lattice sites with nonzero order parameter corresponds to
weak magnetization, while large mi is obtained at the nodal
lines, which have broken pairs [30], thereby causing a phase
difference between the two. As the magnetization data do
not convey anything new to aid our analysis, for brevity the
corresponding plots are not presented here.

A useful quantity that is indicative of a FFLO phase
in real materials is the Ginzburg–Landau parameter, κ . A
large κ denotes extreme type-II behaviour, a requisite for the
nonuniform phase. Since computation of κ needs another
characteristic length i.e. the penetration depth, λ, we proceed
to calculate λ. The experimental scenario [31] has suggested
a large penetration of magnetic flux through the nodal lines
(where the order parameter is zero) in the FFLO phase.

λ can be evaluated from the superfluid stiffness Ds

(∝ 1
λ2 [32]), which denotes the phase rigidity of the condensate

and is given by the long wavelength (q → 0) and static (ω = 0)
limits of the Kubo linear response formula [33],

Ds

π
= 〈−Kx 〉 − �xx (qx = 0, qy → 0, iω = 0), (8)

where the first term 〈−Kx 〉, defined as

〈−Kx 〉 =
〈∑

σ

−t[(c†
i+x̂ ci + c†

i ci+x̂ )]
〉

(9)

is the average kinetic energy along the x-direction and
represents the diamagnetic response to an external magnetic
field. The second term, a transverse current–current correlation
at different times, is the paramagnetic response and is given by

�xx (q, iωn) =
∑

ri

∫ β

0
dτ 〈 jx(ri , τ ) jx(0, 0)〉eiq·re−iωnτ . (10)

Equations (9) and (10) are written in terms of quasiparticle
operators, γ (see equation (3)), whose expectations are
evaluated between the BdG states (un and vn) to compute Ds

from equation (8).
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(a)

(b)

Figure 3. The coherence length, ξ , (in units of t) measured from the
modulation profile of �i (figure 2) is schematically shown for
|U | = 2.5 (a) and |U | = 4 (b) as a function of the magnetic field. In
(a), hc1 = 0.35 marks the onset of a one period modulation (FFLO)
with ξ1 = 32. At h12 = 0.4, a transition from a one period to a two
period modulation (ξ2 = 16) is obtained, which persists until
hc2 = 0.55. In (b), the FFLO regime commences with a two period
modulation at hc1 = 0.9 with ξ1 = 16 (the one period solution does
not exist), then crosses over to a four period solution (with ξ2 = 8) at
h24 = 1.2 and continues until hc2 = 1.88.

In figure 4, we present Ds, which shows a considerable
decrease within the FFLO phase (between hc1 and hc2 and
marked by dotted lines in figure 4) as the phase rigidity is
progressively destroyed with increasing magnetic field.

The lowering of Ds as a function of h indicates a rise in
the penetration depth (in view of the inverse-square relation
between Ds and λ). This, along with the lowering of the
coherence length yields large κ values, a feature expected to
demonstrate the existence of a FFLO phase.

4. Conclusions

We summarize the important results obtained here. The
presence of a FFLO phase is investigated in the context of a
two-dimensional superconductor in the presence of a magnetic
field. The existence of a phase characterized by a modulated
local pairing amplitude (FFLO) for a number of parameter
values, i.e., electronic interaction, |U | and band filling, μ

(or particle density) is convincingly demonstrated. Weak to
moderate values of U , such as |U | = 1, 2.5 and 4 are

Figure 4. The superfluid stiffness, Ds, (in units of t) is shown for
|U | = 2.5 and μ = −0.5 as a function of magnetic field, h. It shows
negligible variation in the BCS regime, while the FFLO phase is
characterized by a large drop in Ds. The phase boundaries are shown
by dotted lines.

considered and, except for |U | = 1, we obtained a FFLO
phase for the other two representative values with the larger one
among them showing brisk modulation (more periods) in the
spatial profile of the pairing amplitudes as the magnetic field
is increased. Thus larger values of the interaction parameter
facilitate a realization of the FFLO phase. All of these features
are present for a large range of band filling, excepting the ones
for which the particle density becomes very small.

The implications of these results to real materials are
elucidated in the following manner. The sharp drop of the
coherence length, ξ , at hc1 , marked by the onset of a modulated
local pairing amplitude underscores the cleanliness of the
sample where the condition l � ξ , a requirement for the
FFLO phase can easily be met. Moreover, ξ further reduces
between hc1 and hc2 , owing to a more dramatic change in the
period of modulation, making room for the above condition to
be satisfied with a greater ease. Also the Ginzburg–Landau
parameter, κ , increases as the magnetic field is enhanced,
due to a simultaneous decrease in ξ and an increase in the
penetration depth, λ. A large κ is suggestive of an extreme
type-II behaviour and thus a condition that needs to be satisfied
to realize a FFLO phase.

The conditions mentioned above seem to be satisfied
to a large extent in heavy fermion compounds and organic
superconductors, and thus these are considered as suitable
candidates to achieve a modulated phase, a theoretical
prediction that was made nearly five decades ago. In
a simple model for a two-dimensional superconductor, we
have demonstrated how some of these conditions are met
in the presence of a magnetic field rendering support to the
candidature of heavy fermion and other systems where the
FFLO phase may be realized experimentally. Possibly in
ultracold atomic superfluids, some of these requirements are
met easily and hence demonstrate signatures of the FFLO
phase in experiments more convincingly than their fermionic
counterparts [13].
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